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EXPLOSION IN A GRANULAR POROUS MEDIUM
WITH VARIABLE DILATANCY

E. E. Lovetskil, v. K. Sirotkin, UDC 622.235.5 +539.374
and E. V. Sumin

Correct description of the flow of a granular medium is very important in considering an explosion in a
granular or brittle rock, The most important feature of the flow of such a medium arises from repacking
effects, which result not only in shear deformation but also in irreversible bulk strain. Usually, this bulk
deformation is described within the framework of a dilatancy model [1]. The magnitude and sign of the dilatancy
velocity are substantially dependent on the pressure and density [2-5]. It is assumed at present [6-9] that the
dilatancy velocity is constant for such a medium. However, such an assumption does not allow one to incorpo-
rate the real dynamic behavior of the medium or to consider the effects of the initial state on the results of the

explosion.

Here we process experimental data to derive an expression for the dilatancy velocity as a function of
the pressure and density. This resuit is used in determining the expansion of a spherical gas cavity in an
elastoplastic dilating medium. Particular attention is given to the final characteristics of the medium near
the cavity. No allowance is made for the strength difference between the undisrupted and disrupted media,
although this can be done if cne assumes that the adhesion is small by comparison with the dry friction.

1. We consider spherically symmetrical motion in an elastoplastic porous dilating medium, which is
compressed by a lithostatic pressure py. The source of the motion is a cavity of initial radius e, filled with
adiabatically expanding explosion gases of initial pressure p, and adiabatic parameter y.

The motion is described by the equation of continuity and the equation of motion:

ap ap ou u .
T?T+”?7+P(777+2_r‘)=0’ 1.1)
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where r is the distance from the explosion center, t is the time, u is the mass velocity, and p is the current
density. The tangential stress 7 and the pressure p are given by © = (1/2)(0, — dp), p = — (1/3)(0, + 20,),
where o and o, are the radial and azimuthal components of the stress tensor.

The stress variation in the elastic-strain zone is related to the velocity by Hooke's law:

dv ou u ~dp__ ,{ du u 1.3
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where d/dt =98/5t + ud/ar, G is the shear modulus, and K is the bulk compresslon coefficient.
Plastic strain will oceur if the condition for plastic flow is met. We take this condition in the Mises—
Huber —Schleicher form: o
) .
75l Tl=e@p+Y, (1.4)

where a(A) is the coefficient of friction, which is dependent on the dilatancy velocity A and Y is the adhesion,
The a(A) dependence has been derived in [1] by processing data for various types of sands and takes the form

o (A) = 5or (1.52 + 1.38A — A2), (1.5)
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During the plastic flow, the density of the broken rock alters on account of the elastic strain and of particle
repacking, which leads to the dilatancy effect. The following is [1] the equation describing the volume defor-
mation of the medium with the dilatancy effect in the spherically symmetrical case:

du u 1 (dp 9 i d :
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Experiments [2~4] indicate that A is dependent on the pressure and density; in particular, if can take positive
or negative values, which correspond to loosening and consolidation of the rock.

Dilatancy has been examined [3] in experiments on octahedral shear for sands. Curves relating the vol-
ume change to the axial deformation have been drawn for various pressures. The sand is lcosened at low pres-
sures (as pointed out in [5], the loosening corresponds to the current porosity m belng less than the critical
porosity m 4 ) at a given pressure). The dilatancy velocity decreases as the pressure rises, and the sand
begins to congolidate at high pressures. The state with the critical porosity is characterized by plastic shear
without change of volume. As the deformation proceeds, each of the curves tends to a certain constant value,
which corresponds to the porosity tending to the critical value. The curve for m {) is closely approximated by

My (p) = 0.46 — 0.02 (1n _5“)1.35’
1

where p; is chosen from considerations of convenience as 1 kgf/ cm?. This formula implies that the eritical

porosity decreases as the mean pressure in the specimen rises, The expression for A {, p) was chosen as

a function of the ratio p /p, where p +@)=pMA—m_ () s the critical density corresponding to the critical
porosity mu{p) and defined by A{py) = 0. Here Py is the density of the mineral components. The very simple
form of A(p, p) corresponding to this property is defined by

Ap, o) = Ao( "*é”’).

The coefficient Ay is determined from experimental data [6], which give A;=0.5.

2. The system (1.1)-(1.6) may be written in finite-difference form by analogy with [10] and then has
second-order accuracy in time and coordinate. An artificial linear-quadratic viscosity is infroduced in order
to smooth out the hydrodynamic discontinuities. The accuracy of the calculation was checked from the law of
conservation for the total system energy. The coordinate net was recalculated during the solufion {10], which
involved increasing the dimensions of the Lagrangian spatial cell.

Figures 1~6 show the numerical results. Figure 1 shows the pressure as a function of the reduced dis~
stance rw™1/3 (W = -——nao ? 7 Ls the explosion energy) for the three instants t; =6ty, t,=9t;, and t; =27,

{curves 1-3, respectively). Here ty=a,/c; (cl is the longltudinal-wave speed and v, is the initial volume). The
arrows indicate the start of the plastic flow behind the front. Figures 1 and 3 describe the behavior of a me-
dium with the initial porosity my=15% (1—m,=1 /pMVO). The numerical calculations were performed with an
initial lithostatic pressure py, =0.2 kbar, K=0.52 Mbar, G =0.24 Mbar, and y=1.4.

8, maz » Kbar
p. kbar 5 \\\ !
12 . \&\
- AN
2 . \\\\\\
8 N\
P\j ¢ \\\ 2

A
‘\\
A )/' 0 i .
\¥¥ 3 10 } ,\\:‘\\\\
0 0,2 0,4 0,6 2 < g 2’ 2
r-/WV“’, m kg’ v m/kg &

Fig. 1 Fig. 2

267



f
1 } i
2 0,3\0,5 09 1,2
O - )

N— r'/Wf/? m/kg1/3
_1 wt /
_2 5
0 92 0,4 6,6 / : 1
/%7 m kg -3
Fig, 3 Fig. 4
0 20 40 m %,
a,/a, Rn /% | //l P//‘r—'_
6,4«{ 68 : A
| / /
| |
_ 0,2
A /
5,015 50 ’ -—+ T2 3
! / B | N /
. j -~ 0,4
575J’ 52 / L / : |
L ! i ] 0,6 7 ;
5 15 my, % Py, - kbar
Fig. 5 Fig. 6

Figure 1 shows ‘that the distance dependence of the pressure is governed by two factors. Firstly, a
compression wave propagates through the medium whose amplitude steadily decreases. Secondly, stresses
arise near the cavity that are determined by the dynamics of the medium behind the compression-wave front.
The distance dependence of these stresses is not monotonic. This behavior has been predicted from the solu-
tion to a model problem [8, 9]. This nonmonotonic behavior persists also in the residual stresses. The basic
distance dependence of the residual stresses is analogous to that of [9]. )

The amplitude decay in the compression wave is substantially dependent on the initial porosity. Figure 2
shows the distance dependence of the maximal radial stresses oy max in the compression wave for various
porosities. Here curves 1-3 have been constructed for initial porosities of 5, 15, and 25%, respectively. There
is a characteristic kink, whose coordinate r, is described closely by

reWt% .2 0.56 — 0.9m.

This kink is due to detachment of the compression wave from the plastic~-flow front and formation of an elastic
precursor. The damping at small distances is of the form oy g« ~y B , where g is dependent on the porosity.
For example, 8 =1.6 for m;=5%, while p=1.8 for m;=25%. Further, S~ 1 for all porosities in the elastic
region. The slight difference of 8 from one may be due to the use of the artificial viscosity.

We now consider the density change in the expansion of the cavity. The change is determined by the
reversible elastic strains and the irreversible deformation associated with the dilatancy. Figure 3 shows
graphs for the dilatancy velocity and relative specific volume v/v, in relation to reduced distance for the in-
stants of Fig. 1 (curves 1-3, regpectively). The volume change is basically elastic in the region of the com-
pression wave, and the peak in the density is related to the elastic strain (minimum specific volume) in the
region of the compression wave, as is evident from Fig. 3. Plastic flow begins directly behind the compression-
wave front, and this results in irreversible bulk deformation associated with dilatancy. The « of (1.4) de-
creases as the initial porosity increases. Then the plastic-flow front approximates to the compression-
wave front. I the porosity is sufficiently high (m,> 40%), these two fronts coincide until the compression
wave degenerates into the elastic precursor. The graph for A shows that there can be three states of ir-
reversible deformation during the cavity expansion. In the initial stage, the pressure is high throughout the
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region encompassed by the plastic flow, and the dilatancy velocity is negative, and therefore there is irrevers-
ible consolidation (curve 1 in Fig. 3). Then the dilatancy velocity becomes sign-varying (curve 2), but the
shear strain is small at the initial stage of the explosive motion, so this has little effect on the curve for the
specific volume. Subsequently, the pressure falls and the dilatancy velocity hecomes positive throughout the
plastic region (curve 3). The nonmonotonic dependence of the dilatancy velocity on the distance means that
there is also a nonmonotonic behavior in the specific volume.

This picture in the dilatancy velocity is substantially dependent on the initial porosity. For example,
only the first condition occurs for high porosities, where there is only consolidation., Also, the dilatancy co-
efficient is always positive for low initial porosities.

These features of the strain during the expansion are most prominent for the bulk residual strain ¢
(e =v/vy~1) as a function of distance, which is shown in Fig. 4. Curves 1-3 correspond to initial porosities
of 5, 15, and 25%. At low porosities (curve 1), a loosening zone is formed near the cavity, whose size is
approximately half the final radius of the plastic~flow zone. As the porosity increases fcurve 2}, the residual
bulk strain shows a nonmonotone dependence on the reduced distance. Finally, curve 3 shows that there is a
consolidation zone near the cavity. This behavior of the residual specific volume means that there is a zone
of reduced porosity at reduced distances rW/320,25-0.6. These results allow us to examine the behavior of
the permeability k from the relationship between the latter and the porosity [11] k~m!, where [ =~ 10 for sand.
Therefore, here the nonmonotone behavior ¢ means that there is a zone of reduced permeability near the
cavity.

Figure 5 shows the relative final radius of the cavity ay/a, and the radius of the plastic~flow zone R/
a, as functions of the initial porosity, which show that the final radius of the cavity increases linearly with the
porosity. However, at m,> 20%the ay, tmg) dependence becomes nonlinear and a4, begins to increase more
slowly. Also, Ry, is constant at low porosities, while it begins to decrease slowly for m; > 20 %.

The final dimensions of the cavity and the plastic-flow zone are due to the following two factors. The
loosening effect reduces the final radius of the cavity [7], while the final radius of the plastic-flow zZone in-
creases [9], Also, the final values are substantially influenced by the coefficient of friction {strength of the
medium). It has been shown [7, 9] that ay, and Ry, decrease as the friction increases for A =const. The rise
in porosity resgults in a fall in strength and a reduction in the dilatancy velocity. For low porosities, both
factors favor increase in the final radius of the cavity. The dilatancy velocity becomes negative for my > 20%,
and the ay, (A) dependence becomes weaker in the region of negative A, while the am (@) dependence is un-
altered. This means that the a,y, (m() dependence also becomes weaker. These factors balance out at small
porosities as regards the final radius of the plastic~flow zone. The Ry, (A) dependence becomes stronger
in the region of negative A, while the character of Ry (@) is unaltered. This results in the dependence of Ry,
on the initial porosity.

The variation in the porosity in the explosion is determined by m, and by py. We also examined the
effects of lithostatic pressure on the bulk residual strain. Figure 6 shows the resuits for the following regions:
residual loosening 1, residual consolidation 3, and nonmonotonic behavior of the residual porosity 2. The cal-
culations were performed down fo a lithostatic pressure py of 0.05 kbar, while for lower pressures they were
extrapolated as indicated by the broken lines. Figure 6 also serves to define the permeability after the ex-
plosion. When the relation between the initial porosity and lithostatic pressure is as in region 1, there is an
improvement in the filtration parameters in the plastic-flow zone. Region 2 corresponds to increased per-
meability near the cavity, but with a reduction in the permeability at large distances (Fig. 4). In region 3
there is a deterioration in the filtration parameters in the plastic~flow zone.

3. Here we have considered an explosion in a medium in which the dilatancy velocity and strength are
dependent on the pressure and density. T has been found that the initial porosity has an appreclable effect on
the propagation of the shock waves in a granular medium. TIn particular, the damping of the maximal radial
stresses increases with the porosity, as does the final size of the cavity. The size of the plastic-flow zone is
only slightly dependent on the initial porosity for mj< 20 % and begins to decrease for m, > 20%.

The initial porosity has its greatest effect on the behavior of the residual bulk strain. There is a change
in the behavior of the residual strain from expansion to consolidation as the porosity and lithostatic pressure
increase. At intermediate values of the porosity there may be nonmonotonic behavior of the bulk residual
strain: expansion near the cavity and consolidation at larger distances.

We are indebted to A. N, Bovt and V. N, Nikolaevskil for useful discussions.
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